Feedback attenuation and adaptive cancellation of blade vortex interaction on a helicopter blade element

نویسندگان

  • Kartik B. Ariyur
  • Miroslav Krstic
چکیده

Blade vortex interaction (BVI) noise has been recognized as the primary determinant of the helicopter’s far field acoustic signature. Given the limitations of design in eliminating this dynamic phenomenon, there exists a need for control. We believe that this paper is the first model-based effort to attempt the same. We present herein the application, first of feedback control strategies, and then of adaptive cancellation on Leishman and Hariharan’s linear aerodynamic model of a trailing edge flap. Lift fluctuations caused by vortices are taken as output disturbance. The contribution of the vortices to lift is obtained from Leishman’s indicial model for gusts. The use of an active structure for actuation is assumed, and the actuator is approximated as a lag element. To design an adaptive cancellation scheme that is applicable not only to BVI but also to general problems with periodic disturbances, we start with the classical sensitivity method, and arrive at an adaptive scheme whose stability we discuss via averaging. Sacks et al. arrived at the same result by introducing a phase advance into a pseudogradient scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Stresses in Helicopter Composite blade in Hovering Maneuver

The main purpose of this article is the structural analysis of a composite blade of a selected helicopter. In this study, the stresses on rotors' blades caused by centrifugal forces, lift, drag and torque are analyzed. The governing equations of the structure behavior and solving processes were carried out by MATLAB software, and simulation is carried out by ABAQUS software, and they are compar...

متن کامل

Multiple-Surrogate Approach to Helicopter Rotor Blade Vibration Reduction

The advantages of usingmultiple surrogates for approximation and reduction of helicopter vibration are studied. Multiple approximation methods, including a weighted-average approach, are considered so that pitfalls associated with only using a single best surrogate for the rotor blade vibration-reduction problem are avoided. A vibration objective function corresponding to a flight condition in ...

متن کامل

The AVINOR Aeroelastic Simulation Code and its Application to Reduced Vibration Composite Rotor Blade Design

The Active Vibration and Noise Reduction (AVINOR) aeroelastic simulation code for helicopter rotor blades is described. AVINOR is a research code that has been developed at UCLA and the University of Michigan for the purpose of conducting computationally efficient aeroelastic response analyses while maintaining a level of fidelity so as to be suitable for preliminary design of helicopter rotor ...

متن کامل

Helicopter Non-Unique Trim Strategies for Blade-Vortex Interaction (BVI) Noise Reduction

An acoustics parametric analysis of the effect of fuselage drag and pitching moment on the Blade-Vortex Interaction (BVI) noise radiated by a medium lift helicopter (S-70/UH-60) in a descending flight condition was conducted. The comprehensive analysis CAMRAD II was used for the calculation of vehicle trim, wake geometry and integrated air loads on the blade. The acoustics prediction code PSU-W...

متن کامل

A moderate deflection composite helicopter rotor blade model with an improved cross-sectional analysis

The compatibility between a composite beam cross-sectional analysis based on the variational asymptotic approach, and a helicopter rotor blade model which is part of a comprehensive rotorcraft analysis code is examined. It was found that the finite element cross-sectional analysis code VABS can be combined with a moderate deflection rotor blade model in spite of the differences between the form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Contr. Sys. Techn.

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1999